Technical Data

- Magnetic Sounder
- Magnetic Buzzer
- Supplemental Information on Speaker Handling
- Sound Pressure and Tone
- Soldering
MAGNETIC SOUNDER

Various Types of Magnetic Sounder Buzzers
Acoustic components generally referred to as buzzers can be classified as: ① magnetic sounders, ② electric sound type buzzers, ③ vibrating hammer type buzzers, ④ piezoelectric buzzers, and ⑤ piezoelectric sounders. A sounder issues sound by inputting specific electric signals from outside. Therefore, it is necessary to provide an oscillating circuit when utilizing a sounder. A buzzer (electric sound type buzzers, vibrating hammer type buzzers), meanwhile, incorporates a sounder and an oscillating circuit within, so it produces sound only when direct current is applied to it.

Structure and Operating Principle of Magnetic Sounders
The structure of a magnetic sounder is shown in Fig. 1. The operating principle of a magnetic sounder is herein described, based on this figure. The magnetic flux from a magnet produces a bias magnetic field at the tip of the iron core, drawing a diaphragm toward itself by a suitable force. If electric signals (for example, rectangular-shaped voltage with a frequency of 3.2 kHz and 1.5 Vp-p) are input, an electric current will intermittently flow through the coil, generating an intermittent magnetic field at the tip of the iron core. The magnetic field drives the diaphragm up and down, generating the sound pressure corresponding to the amplitude of the diaphragm. This sound pressure is further multiplied by the resonance effect of the resonator installed on the case. Each product is designed and adjusted based on resonance frequency (fo) and resonance frequency (fv), so that excellent performance is obtained at the standard frequency. Accordingly, the functional composition of a magnetic sounder can be divided into the magnetic circuit unit, and the resonance unit. (Fig. 1)

Characteristics
Measuring Circuit
We input electric signals of a specific frequency to a magnetic sounder, using the measuring circuit shown in Fig. 2, to measure the characteristics of the sounder. Please use this information in measuring your sounders and arranging driving circuits. (Fig. 2)

Frequency Characteristics
A magnetic sounder emits sound based on the frequency of the electric signals input, and it is the frequency characteristics that determine what degree of sound is caused in relation to input frequency. Frequency characteristics are generally shown as a graph that indicates results of measurement at the sound pressure level (SPL) 10 cm in front of the magnetic sounder, while changing the frequency of input signals from 500 Hz to 10 KHz at the rated voltage. They are referred to as sound pressure level frequency characteristics.

In this catalog, the representative value of the frequency characteristics for each product is shown for reference. Use these values for product selection to match the purpose and input conditions for use, while noting their difference. Frequency characteristics shown in the catalog are those at a time when rectangular waves (Vp-p) are input. When input is in the form of rectangular waves (Vp-p), sine waves, etc., frequency characteristics will be different. Attention should be paid to this point.

Reverse Connection
There is polarity in magnetic sounder input. Even if a reverse-polarity connection is made, sound is produced, but it is not certain that sound pressure specifications will be satisfied. In the case of a reverse connection, the operating direction of the magnetic field will change (attraction (→) repulsion), and resonance frequency (fo) will alter, so it is possible that sound pressure at the standard frequency will decline or deviation will become larger.

Frequency characteristics caused by voltage changes
There may be cases in which a magnetic sounder is used at voltages other than the rated voltage. Note that frequency characteristics stated in the catalog are those at the time of the rated voltage. Frequency characteristics during input at voltage other than the rated voltage changes as shown in Fig. 3. As input voltage becomes lower, resonance frequency (fo) of the magnetic sounder rises, as input voltage becomes higher, fo reduces. Because resonance frequency (fv) of the resonator does not change in relation to voltage, the frequency band becomes narrow when voltage is low, while the band widens to the low frequency side when voltage is high. If voltage is too low, fo may rise above the standard frequency, causing a substantial reduction of sound pressure. (Fig. 3)

Average consumption current
The average consumption current (mA), as set forth in the catalog, is described in the form of MAX.00. This means that, if the rated voltage is applied without limiting electric current, the average current value will not surpass 00mA. Be careful, as it is not meant that electric current exceeding 00mA must not be applied to the product. In reality, maximum current 2 to 3 times higher than the average current is required as peak current. Therefore, a driving current that can supply sufficient current should be provided. If the peak current is restricted, there can be a case in which sound pressure will not be output as specified.
(Example) In the case of QMB-111P, whose average current is MAX.10mA, prepare a driving circuit that can supply the peak current of at least 30mA.

Fig. 1 Construction view of QMX series

Fig. 2 Measuring Circuit
Our standard circuit for measurement is as shown below:
(Vce=0.15 volts or lower)

Fig. 3
Resonance Effect of Helmholtz

Sounders are usually built into equipment and used in that state. At that time, users may have various needs, such as “raising sound pressure” or “widening the frequency band.” By installing a resonator on the case in which the sounder is contained, etc., it is possible to make sound characteristics closer to these requirements. On this occasion, the “resonance effect of Helmholtz,” which can be used for reference purposes, is hereby introduced. To improve the characteristics, it is possible to widen the frequency band or to raise the sound pressure of the standard frequency or desired frequency by setting the resonance frequency (f) of the external resonator for the sounder at a level slightly higher than double the standard frequency, a desired frequency close to it, or the resonance frequency (f0) of the sounder. The resonance effect formula of Helmholtz shown in Fig. 4 represents a theoretical formula that demonstrates the relationship between f0 and the external resonator and the size of the resonator. Because the effect of the resonator incorporated in the sounder is not included, it is necessary to take the acoustic combination with the resonator of the sounder in actual setting. The usual method is to incorporate the sounder in the real body of the external resonator and adjust its sound emission hole, etc., while considering the value, calculated through the formula, and to seek optimization. (Fig. 4)

Example of Execution (Experiment)

The degree of improvement in the characteristics attained through the addition of a resonator to the outside of the sounder is explained, using the results of an experiment employing the sounder GMB-10SP as an example. The standard frequency of this product is 2,048 Hz, while the sound pressure specification for the product as a signal unit is min 70 dB (typical 77 dB) in terms of sound pressure at 10 cm. (Fig. 5) Because this sounder has only a small space in front of the diaphragm, it does not have resonance frequency (f). Therefore, it was considered that, even if it is incorporated, little effect will arise on the external resonator, because its space capacity is small. Dimensional conditions for the external resonator shall be in accordance with Fig. 6, (Fig. 5 and Fig. 6)

1. Expansion of the band

In order to widen the frequency band to be used to 2,048 Hz - 2,700 Hz, it is considered to set f for the external resonator in Fig. 6 at around 2,700 Hz. The theoretical diameter of the sound release hole, obtained by solving the relational expression in Fig. 4, is D=1.7 mm, if the value is slightly reduced to D=1.6 mm, for subsequent fine adjustment, the theoretical value based on the relational expression becomes 2.480 Hz. The f0 value resulting from real measurement arises at 1,700 Hz because of the effect of the signal-unit characteristics of the sounder. The actual measurement value will be equal to the characteristics shown in Fig. 7. Thus, compared with the signal unit case, the frequency band will be expanded. (Fig. 7)

2. Raising the sound pressure

To increase the sound pressure of the standard frequency of 2,048 Hz above that of the single unit, f0 for the external resonator in Fig. 6 is assumed to be set at 4,100 Hz, which is twice the standard frequency. If D=3.3 is assumed, the theoretical f0 value based on the relational expression 4,270 Hz. The f0 value resulting from real measurement, however, will generate at around 4,000 Hz due to the single-unit effect, etc., of the sounder.

The real measurement value proves to be as shown in Fig. 8, and it is clear that the sound pressure level at 2,048 Hz is higher than for the single unit. In this case, however, the sound is audibly high-pitched because the second harmonic portion will increase.

Based on the aforementioned experimental example, the resonance effect of Helmholtz and its significance are believed to be understood. Points of attention in setting an external resonator are as follows. (1) If the sounder has a resonator of its own, there is a possibility that the theoretical value of the relational expression in Fig. 4 and the real measurement value will be substantially different, as the resonator or the sounder and the external resonator combine acoustically. In this case, it is necessary to adjust the actual equipment of the external resonator, attaining optimization. (2) To ensure the resonance effect of the resonator, it is necessary to reduce the sound resistance of the sound emission hole if the sound emission hole of the external resonator is reduced too much; however, it is possible that no satisfactory outcome will be produced, even if the same frequency is set.

If sufficient resonance space cannot be secured for the external resonator, open a sound issuance hole, a size at least equal or larger than the sound emission hole, of the sounder on the equipment case, to ensure satisfactory characteristics for the single unit of the sounder, then operate the equipment.

Fig. 4

\[f_0 = \frac{CD}{4 \sqrt{nV(L+0.75D)}} \]

Where:
- \(f_0 \): Resonant frequency of resonator [Hz]
- \(V \): Volume of resonance chamber [mm³]
- \(D \): Diameter of sound emission hole [mm]
- \(L \): Depth of sound emission hole [mm]
- \(C \): Speed of sound = approx. 344000 [mm/sec]

Fig. 5 Frequency response without additional resonator

Fig. 6 Geometrical conditions

Fig. 7 Frequency response with resonator (Design 1)

Fig. 8 Frequency response with resonator (Design 2)
MAGNETIC BUZZER (SELF-CONTAINED DRIVE CIRCUIT)

OPERATION PRINCIPLES AND CONSTRUCTION

ELECTRIC SOUND TYPE BUZZER

These types of electro magnetic buzzers (as pictured in Fig. 1) contain coils which are wound in such a manner to produce L1 for driving, and L2 for feedback purposes (as shown in Fig. 2). When current flows through coil L1 and the diaphragm begins to vibrate, coil L2 detects its vibration, providing feedback to the base of the transistor so that the oscillation becomes synchronized with the vibration of the diaphragm.

Fig. 1 Cut-away view of type TMB

Fig. 2 Circuit diagram of type TMB

CHARACTERISTICS

RESPONSE TIME

The buzzer will take a certain time to produce a sound at its fundamental frequency with its built-in driver. The time required to generate a sound after application of a rated voltage in the respective specifications as a response time. In case it is intended to use the buzzer for producing a pulsed sound output, it must be designed with special attention on the response time. It is recommended to apply the voltage at least for a time twice as much as the response time specified.(Fig. 3)

Example>

For an intermittent operating of the buzzer TMB whose response time is specified as 50 ms. It is recommended to apply the voltage for at least 100 ms.
1) Notes for Designing

1-1) Overview
The speaker vibrates a membrane to generate sound. The membrane emits sound from its front side and back side at the same time. The sound from the front side and the sound from the back side are in opposite phases. When these sounds are combined, they balance each other out to reduce sound pressure level. If you want to increase the SPL efficiently, you need to make a design that offsets the sound from the sound port (front side) off from the sound from the rear openings (back side). Take consideration about this.

Note) When using one of our reflow speakers (SAE-20A, NDT-03C), use care not to block the rear openings (3 openings) if you install other components near these openings.

1-2) Designing the Sound Port in the Cover
The top cover should have a hole area of 10 mm² (approximately equivalent to 3.5 mm dia.; SAE-20A) or larger, or 7 mm² (approximately equivalent to 3 mm dia.; NDT-03C) or larger. These hole areas are preferable because the holes do not receive sound pressure. When the top cover and the speaker are closely in contact, you should insert a gasket (sealing) in the gap between them. The gasket prevents sound leakage. So, you can reduce the difference in SPL that may be caused by assembling processes. In addition, you can prevent the blocking of some part of the sound port of the speaker by applying the top cover. When you use one of our reflow speakers (SAE-20A, NDT-03C), we recommend that you seal the gap by a gasket with the internal diameter of 16 mm dia. and the thickness of 1 mm (SAE-20A) or by a gasket with the internal diameter of 6 mm dia. and the thickness of 1 mm (NDT-03C).

1-3) Improving the Sealing Performance for the Back Space
Make a design that enhances the sealing performance for the backside space (back space) of the speaker. Such design prevents diffraction of sound from the back side. So, the speaker can exercise its proper ability.

1-4) Influence on Other Components
The speaker has a magnet. Consider your design not to arrange the speaker near other components that are susceptible to magnetism.

2) Notes for Assembling

2-1) Reflow Temperature
Use caution not to allow the speaker to be subjected to the reflow temperature that exceeds the temperature and the time listed in the specifications. Otherwise, the membrane is damaged, and abnormal sound may be generated.

2-2) Foreign Matter Prevention
Consider assembling processes to prevent dirt, dust, solder balls, flux, and the like from entering into the speaker from the sound port or back openings. They may cause abnormal sound. The speaker has a magnet. Exercise extreme care about iron dust and the like. They are attracted by the magnet.

2-3) Flux Cleaning
Do not clean the speaker.
SOUND PRESSURE & TONE

dB AND PHON

1. Sound pressure level is referred to as Sound Output and rated in dB (decibel). DB is defined as the sound pressure level in logarithmic ratio to a sound pressure on the basis of the minimal sound pressure (20 μPa) whose 1 KHz sound that a person in good condition can hear out. The sound pressure level is calculated as shown below in measuring an unspecified sound pressure P (μPa).

\[\text{Sound pressure level (dB)} = 20 \log \left(\frac{P}{0.0002} \right) \]

2. The term phon is a unit which describes loudness level as is the case of the decibel. Generally, even the sound level being equal, it is hard for us to hear out the sound clearly due to frequencies. "Loudness contour" is a statistically calculated collection comprising sounds of the same loudness with every frequency based on the 1 KHz sound. The phon is formed through corrections of the sound pressure levels, basing the contour. (Fig. 1)

For measurement of the sound pressure, the sound level meter possessing the A weighting is employed, which shows relatively corrected values in accordance with the loudness contour. This way the term dB is considered to be phon in specifications.

SOUND PRESSURE AND DISTANCE

As there are differences in the measuring distances when manufacturers make the measurement of sound pressure, the following formula is recommended for calculation on occasions when a buzzer itself is tested or compared with a planned finished product. (Fig. 2)

However, as for as the calculated is concerned, it is a theoretical one and therefore subject to change, depending upon circumstances and conditions.

\[B = A + 20 \log \left(\frac{L_a}{L_b} \right) \]

The table below is to show the relations between the measuring distance variation and the sound pressure variation for reference.

<table>
<thead>
<tr>
<th>Measuring distance variation</th>
<th>2 times</th>
<th>3 times</th>
<th>4 times</th>
<th>5 times</th>
<th>6 times</th>
<th>7 times</th>
<th>8 times</th>
<th>9 times</th>
<th>10 times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound pressure variation (dB)</td>
<td>-6.02</td>
<td>-9.54</td>
<td>-12.04</td>
<td>-13.98</td>
<td>-15.56</td>
<td>-16.90</td>
<td>-18.06</td>
<td>-19.08</td>
<td>-20.00</td>
</tr>
</tbody>
</table>

(Example) 10cm : 80dB → 30cm : 80 - 9.54 = 70.46 (dB)
The tone output generated by buzzers is essential in product design. A recommended way of selecting a desired tone is by listening to the different tones produced by the different buzzer. Additionally, FFT analysis is usable for visual tone selection method. The sound is not an oscillation of a single frequency, but as a collected body of individual frequencies. The analysis is to diagnose the ratio of constituent frequencies. The following is a sample analysis of our typical buzzer.

1. Transducer with drive circuit (e.g., HMB type)
 Transducer with drive circuit (e.g., HMB type) & without drive circuit Fig. 3 shows how the peep sound is composed of a collected body of the fundamental frequency and its integer fold frequencies. This sound composed of integer fold frequencies is essentially referred to as a single sound which has a clearer tone than the low pitched buzzers have.

2. Piezoelectric transducer
 The transducer produces the peep sound closer to the pure sound, which is composed of almost the fundamental frequency. Compared with the transducer, it is likely to sound relatively less mellow (Fig. 4).
SOLDERING

SOLDERING AND WASHING

- Soldering conditions
 The sealed miniature sound transducers by Star should not be exposed to extremely high temperatures for prolonged periods of time. As excessive heat will degrade the sealing performance of the unit, soldering should be conducted as quickly as possible.

 Recommended temperature and time for soldering
 250°C within 5 seconds
 350°C within 1.5 seconds

 *Refer to each product specification for more details.

- Dip soldering
 Dip soldering may be conducted only in the case of washable products. As for non-washable products, dip soldering should not be implemented.

- Recommended reflow oven temperature profile for reflowable transducers

 - Recommended temperature profile for lead-free solder
 All reflow type buzzer is available by the following condition.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>180°C</td>
<td>90-120sec</td>
</tr>
<tr>
<td>220°C</td>
<td>max. 60sec</td>
</tr>
<tr>
<td>280°C</td>
<td>max. 10sec</td>
</tr>
<tr>
<td>180°C</td>
<td></td>
</tr>
</tbody>
</table>

- Washing:

 - Washable type transducers.
 Along with other electronic components, these transducers may be washed with cleaning solvents after the soldering process. However, some types of solvents can be harmful to these devices.

 - Non washable type transducers.
 Most cleaning solvents will be damaging to these devices, therefore wave soldering & washing should be avoided.

FLUX REMOVING SOLVENTS

In view of the recent requirement for total elimination of ozone-depleting chemicals, we recommend our customers to use deionized water for their cleaning process at the conditions given below, instead of CFC that conventionally used.

(Condition for cleaning)

- Cleaning solvent: Deionized water
- Solvent temperature: 55±5°C
- Immersion time: 5±0.5 minutes

*Please contact us if there is any question.

RATED VOLTAGE

The term 'Rated Voltage' in the specification of Star's Transducers and Buzzers are described as:

- For Miniature Audio Transducers (External Drive Circuitry)

 ![Graph representing voltage levels for external drive circuitry]

- For Miniature Audio Transducers and Low Pitched Sound Buzzers (Self-Contained Drive Circuitry)

 ![Graph representing voltage levels for self-contained circuitry]

Packaging of reels for surface-mount buzzers

The packaging of surface-mount buzzer reels, are by the standard of JIS C 0806. The size of all reels are shown as below.

- For Model NAT, 300 ccs.
- For SAE/NDT, 500 ccs.
- For Model MLT, 1,000 ccs.

CAUTION

- Safety Precautions
 Use these products within the specified operation voltage scope for their correct, safe use. Read technological data included in this catalog before use of any product.

- Storage / Processing Conditions
 - If this buzzer is placed together with other buzzers in a disorderly way in a single box, the bent portion of its pin, the liquid prevention label (washable-type products), and the buzzer proper may be damaged, and the overall equipment may become nonconformant; as such, much care should be taken.
 - Install the product in a place not exposed to direct sunlight, and store it in a room where temperature and humidity changes are as little as possible. (Temperature 5°C-30°C; humidity 40-60%)
 - During storage, the atmosphere should be free of any noxious gas, and it should likewise be relatively dust-free.
 - During storage, no weight should be placed on the product that could disfigure or change it.
 - The storage period should be limited to one year or less in the packed state.

- Caution about Contents of This Catalog
 - For reasons of technological improvement, these specifications may be changed without notice.
 - Contents herein may not be used or printed without obtaining prior approval.

© FOSTER ELECTRIC CO., LTD. All Rights Reserved.